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ABSTRACT

Automatic speech recognition (ASR) still struggles on dysarthric
speech due to data scarcity and speaker heterogeneity. We present
PhoenixDSR, a phoneme-mediated framework that decouples
acoustic variability from linguistic decoding. A Wav2Vec2-CTC
recognizer trained on healthy speech provides stable phoneme
sequences. From limited dysarthric alignments we estimate a
weighted confusion probability matrix that fuses global and speaker-
specific patterns. A lightweight LLM decoder is trained on five
tasks—bidirectional text-phoneme mapping, dysarthric-to-healthy
normalization, phoneme-to-text decoding, and edit-operation pre-
diction—to enable context-driven repair of systematic phoneme
errors. On CDSD, PhoenixDSR attains 18.3% CER and 13.7%
PER, outperforming end-to-end fine-tuning and LLM post-editing;
ablations verify the importance of phonotactic pretraining and
confusion priors. Few-shot personalization updates only the prior,
yielding additional gains without further gradients. By combining
interpretable phoneme-level priors with context-aware decoding,
PhoenixDSR achieves data-efficient and robust recognition.

Code: github.com/wyxuan721/PHOENIXDSR

Index Terms— dysarthria, automatic speech recognition,
phoneme confusion, large language models.

1. INTRODUCTION

Dysarthria is a neuromotor speech disorder arising from congenital
conditions or acquired injury. It is characterized by impaired articu-
lation and reduced intelligibility, with both segmental and supraseg-
mental cues deviating substantially from typical speech [1,12]]. These
deficits profoundly hinder everyday communication [3].

Despite rapid progress in automatic speech recognition (ASR),
recognition accuracy for dysarthric speech lags far behind that for
healthy speech. A well-established cause is data scarcity: prolonged
speaking is difficult for many individuals with dysarthria, limiting
corpus collection and thus training resources [4} 5, |6]]. Insufficient
data prevents deep models from learning robust pathological acous-
tic characteristics. Compounding the challenge, dysarthria exhibits
marked heterogeneity across etiologies and severities, which makes
learning invariances difficult and further constrains cross-speaker
generalization [7, 18].

To improve generalization under scarce supervision, prior work
has explored self-supervised pretraining and meta-learning to enhance
domain adaptation and speaker transfer [9}|10]. Data augmentation
and generative approaches—e.g., synthetic speech or personalized
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perturbations via VAE/GAN—have also been investigated [11}[12].
While promising, a substantial gap to healthy-speech ASR remains.

In contrast to the difficulties exhibited by Al systems, interlocu-
tors who are close to individuals with dysarthria—such as family
members or partners—can more readily understand what they intend
to communicate [S]]. This rapid adaptation relies on two mechanisms:
(i) discovering speaker-specific phoneme confusions (e.g., consis-
tently realizing /c/ as /ch/), and (ii) leveraging linguistic context to
infer intended words [13]]. If an ASR system could emulate these
processes, capturing phoneme-level deviations and using context to
repair errors, it could enable fast and interpretable personalization.

Phoneme-level modeling has been repeatedly identified as cru-
cial for dysarthric speech. For instance, Lee et al. propose a dy-
namic phoneme-level contrastive learning (DyPCL) framework to
improve phoneme representations [[14]; Yeo et al. show that phoneme-
level articulatory features aid automatic severity classification in
Korean dysarthria [[15]]; and Almadhor et al. develop a spatiotemporal
dysarthric ASR (DASR) system that learns phoneme shapes using
SCNN and multi-head attention transformers [11]. These studies
underscore the value of explicit phoneme modeling.

Large language models (LLMs) are natural candidates for context-
based correction because they encode strong linguistic priors and have
shown potential for repairing ASR outputs [16} [17, |18]. However,
to our knowledge, no published work has targeted LLM-based cor-
rection specifically for dysarthric ASR. Existing LLM correction
pipelines typically assume that most tokens are already correct and
rely on sparse, localized edits, an assumption that breaks down when
dysarthric ASR exhibits high error rates.

Our approach. Motivated by these insights, we propose a
phoneme-mediated dysarthric ASR pipeline that (i) uses a phoneme
recognizer trained on abundant healthy speech to map acoustics into
a stable and interpretable phoneme sequence, thereby decoupling
acoustic variability from linguistic decoding; (ii) estimates a weighted
phoneme confusion probability matrix from limited dysarthric align-
ments by fusing global patterns with patient-specific deviations for
few-shot personalization; and (iii) decodes phonemes to text with a
lightweight LLM via a two-phase fine-tuning strategy: Phase I learns
canonical phoneme<-text mappings from healthy data, and Phase II
adapts to dysarthric realizations under the phoneme-confusion prior.
This design concentrates scarce pathological supervision on confu-
sion modeling while leveraging rich healthy data for phonotactics
and decoding.

Our contributions are summarized as follows.

* We propose a phoneme-mediated dysarthric ASR framework that
maps speech into a robust phonemic space learned from healthy
data and leverages a two-phase multi-task LLM decoder to bridge
phonemes and text with normalization and context-aware repair.
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* We introduce a lightweight and interpretable adaptation mechanism
based on a weighted confusion probability matrix that integrates
global confusions with patient-specific deviations and conditions
the LLM for few-shot personalization.

* We conduct comprehensive experiments on the public CDSD cor-
pus, demonstrating consistent improvements over strong baselines,
strong data efficiency in few-shot personalization, and ablations
that validate each component.

2. METHODOLOGY

As shown in Fig.|1| PhoenixDSR consists of a phoneme recognizer
trained on healthy speech and a multi-task LLM decoder, with a
phoneme confusion matrix serving as an intermediate prior for adap-
tation.

2.1. Phoneme Recognition Model

We first train a phoneme recognition model on large-scale healthy
speech. This strategy reduces reliance on large amounts of patho-
logical acoustic data: the recognizer, learned from abundant healthy
speech, maps the signal—analogous to human perception—into a
finite, interpretable, and stable phonemic representation.

Specifically, we adopt a Wav2Vec2-CTC architecture [19], where
the objective is to maximize the conditional likelihood of phoneme
sequences given the input audio:

Lere = —log P(y | x;0), (D

where x is the acoustic feature sequence, y is the target phoneme
sequence, and 6 are model parameters. After training, this model
produces reliable phoneme sequences p for healthy speech. However,
when applied to dysarthric speech, it inevitably introduces systematic
errors, which we later exploit to build a confusion prior.

2.2. Phoneme Confusion Matrix

Dysarthric speech often deviates systematically from canonical
phonemes. To capture these patterns, we construct a phoneme
confusion matrix that quantifies error regularities and supplies
phoneme-level priors for decoding.

2.2.1. Global Phoneme Confusion Matrix

Given a dysarthric utterance, the recognizer outputs
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which we align to the ground-truth sequence
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using weighted dynamic programming with operations match (M),
substitution (S), deletion (D), and insertion (I).

For each reference phoneme ¢, we collect observed outputs o
(including (DEL) for deletions) and estimate
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To improve robustness with limited counts, we apply hierarchical
smoothing:

15(0 | t) = pt Puie(o | t) + (1 — pt) Poackoti(0), 3)

where Phackofr 15 @ class-level (initial/final) or global distribution and
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is a confidence weight based on sample size N; and shrinkage 5. We
denote the resulting global phoneme confusion distribution as

C,(0]t) = P(o]|?).

It encodes dysarthria-specific error patterns and guides LLM decod-
ing.

2.2.2. Personalized Phoneme Confusion Matrix

The global matrix captures population-level tendencies, but person-
alization requires speaker-specific modeling. We treat the global
distribution as a Bayesian prior and update it with individual statis-
tics.

For speaker s, let ns(t — 0) be the count of substitutions of ¢
into o, with

Nst = Zns(t—m).

We define a smoothed distribution

C~’5(o|t)zAtPSMLE(oH)—i—(l—)\t)Cg(o\t), 4)
where
MLE _ ns(t—o) _ Nsgi
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To balance global stability and personalization, we introduce a
gating mechanism:

Calo|t) = (1 —7e0) Cylo | ) + 72 Culo | £),  (5)
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where 7 and « control smoothness and sharpness. With even a few
samples, C, emphasizes personalized statistics while reverting to Cy
for under-sampled phonemes.

The final personalized matrix integrates population-level regular-
ities with speaker-specific deviations, yielding a compact prior that
enables rapid and robust adaptation in dysarthric ASR.

with

2.3. Multi-task Large Language Model

We fine-tune an LLM with multi-task objectives to transform
dysarthric phonemes into fluent healthy text. We therefore adopt a
two-phase design. For parameter efficiency, the base LLM parameters
O are frozen; we train lightweight adapters.

2.3.1. Phase I: Healthy Speech Supervision

Since the LLM can only process symbolic semantics rather than
acoustic signals, Phase I is designed to learn bidirectional mappings
and phonotactics between fext and canonical phonemes using healthy
data. Let t™*) denote healthy text and p™ its canonical phoneme
sequence. We use two complementary seq2seq tasks:
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Fig. 1. PhoenixDSR framework.

Both are optimized with token-level cross-entropy under teacher
forcing. Denoting the losses by L7, and L, the Phase I objective is

LY =X Ly + X L. )

The base LLM O is frozen; only lightweight adapters and task heads
are trained, yielding A for subsequent initialization.

2.3.2. Phase II: Dysarthric Speech Adaptation

Phase II adapts the model to dysarthric inputs by conditioning on
the phoneme-confusion prior through three complementary tasks:
dysarthric-to-healthy phoneme normalization and phoneme-to-text
mappings to handle pronunciation variability, and edit-operation pre-
diction to provide explicit correction signals. Given a dysarthric
phoneme sequence p@ from the recognizer, we construct

U = [oBs = p'¥); PRIOR = P],

where P serializes top-k canonical candidates with probabilities from
the phoneme confusion prior P(true | obs). Phase II comprises

(h)

Ts : p(d) Y, P (phoneme normalization), ®)
Ta: p(d) BN (core decoding), )
Ts: (', p™) Lo e (edit ops), (10)

where e € {M, S, D, I}. Generation tasks use the standard negative
log-likelihood

Leen(T) == log Po_san(ye | y<,U), (1)
t

and sequence labeling uses token-level cross-entropy. We initialize
adapters with A < A®D and optimize

L = X3 Leen(T3) + M Loen(Ta) + s L7z, (12)
with a larger weight on the core task 7. Training proceeds strictly

Phase I — Phase II (no mixing), and early stopping is based on
dysarthric validation.

Table 1. CDSD speaker split (speaker-independent, 8:1:1).

Split  #Speakers  Share Notes
Train 36 ~80%  Global modeling
Dev 4 ~10% Model selection
Test 4 ~10% All reporting
Total 44 100% -

3. EXPERIMENTS

3.1. Datasets

Healthy speech. We use AISHELL-1 (Mandarin) [20] as healthy su-
pervision to learn text—-phoneme bidirectional mappings. The corpus
is split into train/dev/test with an 8:1:1 ratio.

Dysarthric speech. We experiment on CDSD [J3]] with a speaker-
independent split at an 8:1:1 ratio. Table [T]reports the speaker counts
per split; all experiments strictly use speakers unseen in training.

We adopt a tone-aware Mandarin phoneme inventory that models
initials and finals separately, where each final is bound with its tone to
form a distinct phoneme (e.g., f, anl, an2, ...). The phoneme recog-
nizer is trained on AISHELL under this inventory and transferred to
dysarthric speech, and all phoneme-based experiments use this same
inventory.

3.2. Experimental setups

Phoneme recognizer. We initialize with chinese-wav2vec2-large
[21]]and train a CTC phoneme recognizer on AISHELL-1 (AdamW,
Ir=2x10~*, 200k steps, warmup 10k, SpecAugment). This model is
frozen in Phase II and used to produce dysarthric phoneme sequences
p@ and alignments.

Confusion priors. From alignments on CDSD we estimate a
smoothed global phoneme confusion matrix and a personalized matrix
per test speaker using the gated interpolation described in Section 2]
At inference we serialize, for each observed phoneme, the top-k
canonical candidates and log-probabilities as conditioning tokens.

LLM decoder. We use Qwen3-4B-Instruct-2507 with LoRA
adapters (rank 16, a=32, dropout 0.05) applied to attention and MLP
projection layers; base weights are frozen. Phase I (pinyin) trains
on AISHELL-1 to learn explicit text«>canonical-phoneme mappings,
producing initialization A" . Phase II (cli) initializes from A" and



Table 2. Main results on CDSD (test set).

Table 3. Ablations on CDSD (Test set).

System CER (%) PER (%) Variant CER (%) PER (%)
CDSD strong baseline 22.4 19.8 PhoenixDSR (personalized, K=100) 18.3 13.7
Whisper-FT 344 27.9 w/o Phase I pretraining 259 30.6
LLM-Post (Qwen3-4B) 30.0 27.1 w/o confusion prior 21.9 18.0
PhoenixDSR (global-conf) 20.2 16.7

PhoenixDSR (personalized, K=100) 18.3 13.7 Table 4. Few-shot personalization on CDSD (Test set). Updating

continues on CDSD with dysarthric objectives (phoneme normaliza-
tion, phoneme—text, edit-operation prediction), conditioned on the
serialized confusion prior. Adapters are optimized with AdamW (Ir
1x10™%); early stopping is based on dev CER.

Personalization. Few-shot adaptation is realized by only updat-
ing the personalized confusion prior and its gate, without any gradient
update to the recognizer or LLM. We consider K € {0, 50, 100, 200}
utterances per speaker (each 2-8s), sampled uniformly from the
speaker’s personalization pool disjoint from test prompts.

Baselines and systems. (i) CDSD strong baseline (reported).
Fbank front-end with WenetSpeech pre-training.

(i1) Whisper-FT. Whisper-Large-v3 fine-tuned end-to-end on CDSD.
(iii) LLM-Post. Whisper-FT hypotheses are post-edited by LoRA-
tuned Qwen3-4B-Instruct-2507 (no phoneme mediation).

(iv) PhoenixDSR (global-conf). Our full pipeline with global confu-
sion prior only.

(v) PhoenixDSR (personalized-conf). Our full pipeline with person-
alized prior (default K=100 unless otherwise noted).

3.3. Evaluation metrics

We use CER (character error rate) as the primary metric and PER
(phoneme error rate) as a complement. Both follow the standard
edit-distance formulation

S+ D+1I

ER N

x 100%,

where S, D, I denote substitution, deletion, and insertion counts, and
N is the number of reference units (characters for CER, phonemes
for PER). Error types are further broken down in personalization
analysis.

3.4. Main results

Table [2] summarizes development and test results on CDSD. The
literature CDSD strong baseline is listed for horizontal reference;
Whisper-FT and LLM-Post represent competitive end-to-end and text-
only post-editing pipelines. Our PhoenixDSR surpasses both, and
adding personalized confusion priors (with K=100) yields further
gains.

Top Confusions (1-8) Top Confusions (9-16)

u5-u4 f-h
er5-e5 ei5-eil
ou5-o0u2 i5-i3
z-zh s-sh
c—ch v4-ud
iong3-ong2 v2-u2
uai3-uan3 05-02
ei5-ei4 |-y

0.0 0.2 0.4 0.0 0.2 0.4

Probability Probability

Fig. 2. Top confusion phonemes pairs.

only the personalized confusion prior.

K (utt/spk) CER (%) PER (%)
0 20.2 16.7
50 18.9 14.6
100 18.3 13.7
200 18.3 13.6

Beyond overall averages, we further analyze error patterns. As
visualized in Fig. |ZL the dominant errors are highly structured rather
than random: (i) tone substitutions within the same final (e.g., u5—u4,
erS5—e5, ouS—ou2); (ii) alveolar to retroflex sibilant confusions
(z—zh, c—ch, s—sh); and (iii) vowel rounding or nasal shifts and
medial reduction (v—u, iong3—ong2, uai3—uan3). PhoenixDSR
alleviates these patterned substitutions by conditioning the decoder
on phoneme-level confusion candidates, while standard LLM post-
editing without phoneme mediation often leaves such systematic
errors unresolved.

3.5. Ablation study

We ablate PhoenixDSR on CDSD (Table 3], using the personalized
model (K=100) as reference. Dropping Phase I sharply worsens
CER/PER—Phase I teaches the LLM explicit phoneme—text map-
pings that link pronunciations to text for reliable correction. Remov-
ing the confusion prior also degrades accuracy; a global-only prior
recovers partially but still lags, underscoring the need for speaker-
specific priors.

Few-shot personalization efficiency. We vary the number of
per-speaker adaptation utterances K € {0, 50, 100, 200} (2-8 s each),
updating only the personalized confusion prior and its gate. Table ]
shows monotonic CER/PER reductions with increasing K.

Overall, these studies confirm that (i) phoneme mediation with
a learned confusion prior is critical under high error regimes; (ii)
healthy speech pretraining (Phase I) provides transferable phonotac-
tics; and (iii) a handful of per-speaker utterances suffice to capture
idiosyncratic dysarthric patterns for robust decoding.

4. CONCLUSION

We introduced PhoenixDSR, a phoneme-mediated approach that
maps speech into a robust phoneme space learned from healthy data
and conditions a multi-task LLM on a fused global—personalized con-
fusion prior for context-aware, interpretable correction. On CDSD,
PhoenixDSR achieves 18.3% CER and 13.7% PER, surpassing end-
to-end fine-tuning and text-only post-editing; ablations confirm the
importance of phonotactic pretraining and the confusion prior. Few-
shot personalization is realized by updating only the prior without
gradient updates.

Future work will extend evaluation to other dysarthric corpora
for cross-lingual robustness, broaden baselines, and report statistical
significance. We also plan streaming and human-in-the-loop evalua-
tions, finer-grained error analysis, and efficiency studies with smaller
LLM backbones and lightweight prior estimation.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

(13]

5. REFERENCES

Frank Rudzicz, “Articulatory knowledge in the recognition of
dysarthric speech,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 19, no. 4, pp. 947-960, 2010.

Shimon Sapir, “Multiple factors are involved in the dysarthria
associated with parkinson’s disease: a review with implications
for clinical practice and research,” Journal of Speech, Language,
and Hearing Research, vol. 57, no. 4, pp. 1330-1343, 2014.

Donald B Freed, Motor speech disorders: Diagnosis and treat-
ment, plural publishing, 2023.

Frank Rudzicz, Aravind Kumar Namasivayam, and Talya Wolff,
“The torgo database of acoustic and articulatory speech from
speakers with dysarthria,” Language resources and evaluation,
vol. 46, no. 4, pp. 523-541, 2012.

Mengyi Sun, Ming Gao, Xinchen Kang, Shiru Wang, Jun Du,
Dengfeng Yao, and Su-Jing Wang, “Cdsd: Chinese dysarthria
speech database,” arXiv preprint arXiv:2310.15930, 2023.

Heejin Kim, Mark Hasegawa-Johnson, Adrienne Perlman,
Jon R Gunderson, Thomas S Huang, Kenneth L Watkin, Si-
mone Frame, et al., “Dysarthric speech database for universal
access research.,” in Interspeech, 2008, vol. 2008, pp. 1741—
1744,

Siddharth Sehgal and Stuart Cunningham, “Model adaptation
and adaptive training for the recognition of dysarthric speech,”
in proceedings of SLPAT 2015: 6th workshop on speech and
language processing for assistive technologies. Association for
Computational Linguistics, 2015, vol. 15, pp. 65-71.

Seyed Reza Shahamiri, “Speech vision: An end-to-end deep
learning-based dysarthric automatic speech recognition system,”
IEEE Transactions on Neural Systems and Rehabilitation Engi-
neering, vol. 29, pp. 852-861, 2021.

Shujie Hu, Xurong Xie, Zengrui Jin, Mengzhe Geng, Yi Wang,
Mingyu Cui, Jiajun Deng, Xunying Liu, and Helen Meng, “Ex-
ploring self-supervised pre-trained asr models for dysarthric
and elderly speech recognition,” in ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2023, pp. 1-5.

Shiyao Wang, Shiwan Zhao, Jiaming Zhou, Aobo Kong, and
Yong Qin, “Enhancing dysarthric speech recognition for unseen
speakers via prototype-based adaptation,” in Proc. Interspeech
2024, 2024, pp. 1305-1309.

Ahmad Almadhor, Rizwana Irfan, Jiechao Gao, Nasir Saleem,
Hafiz Tayyab Rauf, and Seifedine Kadry, “E2e-dasr: End-to-end
deep learning-based dysarthric automatic speech recognition,”
Expert Systems with Applications, vol. 222, pp. 119797, 2023.

Zengrui Jin, Mengzhe Geng, Jiajun Deng, Tianzi Wang, Shujie
Hu, Guinan Li, and Xunying Liu, “Personalized adversarial
data augmentation for dysarthric and elderly speech recogni-
tion,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 32, pp. 413-429, 2023.

Gifty Ayoka, Giulia Barbareschi, Richard Cave, and Catherine
Holloway, “Enhancing communication equity: evaluation of
an automated speech recognition application in ghana,” in
Proceedings of the 2024 CHI Conference on Human Factors in
Computing Systems, 2024, pp. 1-16.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Wonjun Lee, Solee Im, Heejin Do, Yunsu Kim, Jungseul Ok,
and Gary Lee, “Dypcl: Dynamic phoneme-level contrastive
learning for dysarthric speech recognition,” in Proceedings
of the 2025 Conference of the Nations of the Americas Chap-
ter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), 2025, pp.
4701-4712.

Eun Jung Yeo, Sunhee Kim, and Minhwa Chung, “Auto-
matic severity classification of korean dysarthric speech using
phoneme-level pronunciation features.,” in Interspeech, 2021,
pp- 4838-4842.

Yuang Li, Xiaosong Qiao, Xiaofeng Zhao, Huan Zhao, Wei
Tang, Min Zhang, and Hao Yang, “Large language model should
understand pinyin for chinese asr error correction,” in /ICASSP
2025-2025 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2025, pp. 1-5.

Pranay Dighe, Yi Su, Shangshang Zheng, Yunshu Liu, Vi-
neet Garg, Xiaochuan Niu, and Ahmed Tewfik, “Leverag-
ing large language models for exploiting asr uncertainty,” in
ICASSP 2024-2024 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2024, pp.
12231-12235.

Sheng Li, Chen Chen, Chin Yuen Kwok, Chenhui Chu,
Eng Siong Chng, and Hisashi Kawai, “Investigating asr er-
ror correction with large language model and multilingual 1-
best hypotheses,” in Proc. Interspeech, 2024, vol. 2024, pp.
1315-1319.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and
Michael Auli, “wav2vec 2.0: A framework for self-supervised
learning of speech representations,” Advances in neural infor-
mation processing systems, vol. 33, pp. 12449-12460, 2020.

Hui Bu, Jiayu Du, Xingyu Na, Bengu Wu, and Hao Zheng,
“Aishell-1: An open-source mandarin speech corpus and a
speech recognition baseline,” in 2017 20th conference of the
oriental chapter of the international coordinating committee
on speech databases and speech 1/0 systems and assessment
(O-COCOSDA). IEEE, 2017, pp. 1-5.

Pengcheng Guo and Shixing Liu, “Chinese speech pretrain,”
2022.



	 Introduction
	 Methodology
	 Phoneme Recognition Model
	 Phoneme Confusion Matrix
	 Global Phoneme Confusion Matrix
	 Personalized Phoneme Confusion Matrix

	 Multi-task Large Language Model
	 Phase I: Healthy Speech Supervision
	 Phase II: Dysarthric Speech Adaptation


	 Experiments
	 Datasets
	 Experimental setups
	 Evaluation metrics
	 Main results
	 Ablation study

	 Conclusion
	 References

